منابع مشابه
Primitive Compact Flat Manifolds with Holonomy Group
From an important construction of Calabi (see [Ca], [Wo]), it follows that the compact Riemannian flat manifolds with first Betti number zero are the building blocks for all compact Riemannian flat manifolds. It is, therefore, of interest to construct families of such objects. These are often called primitive manifolds. Hantzsche and Wendt (1935) constructed the only existing 3-dimensional comp...
متن کاملSuperconformal Field Theories for Compact Manifolds with Spin(7) Holonomy
We present a construction of superconformal field theories for manifolds with Spin(7) holonomy. Geometrically these models correspond to the realization of Spin(7) manifolds as anti-holomorphic quotients of Calabi-Yau fourfolds. Describing the fourfolds as Gepner models and requiring anomaly cancellation we determine the resulting Betti numbers of the Spin(7) superconformal field theory. As in ...
متن کاملM-Theory on Manifolds with G2 Holonomy
We study M-theory on G2 holonomy spaces that are constructed by dividing a seven-torus by some discrete symmetry group. We classify possible group elements that may be used in this construction and use them to find a set of possible orbifold groups that lead to co-dimension four singularities. We describe how to blow up such singularities, and then derive the moduli Kähler potential for M-theor...
متن کاملFinsler manifolds with non-Reimannian holonomy
The aim of this paper is to show that the holonomy group of a non-Riemannian Finsler manifold of constant curvature with dimension n > 2 cannot be a compact Lie group and hence it cannot occur as the holonomy group of any Riemannian manifold. This result gives a positive answer to the following problem formulated by S. S. Chern and Z. Shen: Is there a Finsler manifold whose holonomy group is no...
متن کاملFinsler manifolds with non-Riemannian holonomy
The aim of this paper is to show that holonomy properties of Finsler manifolds can be very different from those of Riemannian manifolds. We prove that the holonomy group of a positive definite non-Riemannian Finsler manifold of non-zero constant curvature with dimension > 2 cannot be a compact Lie group. Hence this holonomy group does not occur as the holonomy group of any Riemannian manifold. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inventiones mathematicae
سال: 1996
ISSN: 0020-9910,1432-1297
DOI: 10.1007/s002220050039